Source code for minimalmodbus

# -*- coding: utf-8 -*-
#
#   Copyright 2019 Jonas Berg
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#
"""MinimalModbus: A Python driver for Modbus RTU/ASCII via serial port (via USB, RS485 or RS232)."""

__author__ = "Jonas Berg"
__license__ = "Apache License, Version 2.0"
__status__ = "Production"
__url__ = "https://github.com/pyhys/minimalmodbus"
__version__ = "1.0.2"


import os
import struct
import sys
import time

import serial

if sys.version > "3":
    import binascii

# Allow long also in Python3
# http://python3porting.com/noconv.html
if sys.version > "3":
    long = int

_NUMBER_OF_BYTES_BEFORE_REGISTERDATA = 1  # Within the payload
_NUMBER_OF_BYTES_PER_REGISTER = 2
_MAX_NUMBER_OF_REGISTERS_TO_WRITE = 123
_MAX_NUMBER_OF_REGISTERS_TO_READ = 125
_MAX_NUMBER_OF_BITS_TO_WRITE = 1968  # 0x7B0
_MAX_NUMBER_OF_BITS_TO_READ = 2000  # 0x7D0
_MAX_NUMBER_OF_DECIMALS = 10  # Some instrument might store 0.00000154 Ampere as 154 etc
_MAX_BYTEORDER_VALUE = 3
_SECONDS_TO_MILLISECONDS = 1000
_BITS_PER_BYTE = 8
_ASCII_HEADER = ":"
_ASCII_FOOTER = "\r\n"
_BYTEPOSITION_FOR_ASCII_HEADER = 0  # Relative to plain response
_BYTEPOSITION_FOR_SLAVEADDRESS = 0  # Relative to (stripped) response
_BYTEPOSITION_FOR_FUNCTIONCODE = 1  # Relative to (stripped) response
_BYTEPOSITION_FOR_SLAVE_ERROR_CODE = 2  # Relative to (stripped) response
_BITNUMBER_FUNCTIONCODE_ERRORINDICATION = 7

# Several instrument instances can share the same serialport
_serialports = {}  # Key: port name (str), value: port instance
_latest_read_times = {}  # Key: port name (str), value: timestamp (float)

# ############### #
# Named constants #
# ############### #

MODE_RTU = "rtu"
MODE_ASCII = "ascii"
BYTEORDER_BIG = 0
BYTEORDER_LITTLE = 1
BYTEORDER_BIG_SWAP = 2
BYTEORDER_LITTLE_SWAP = 3

# Replace with enum when Python3 only
_PAYLOADFORMAT_BIT = "bit"
_PAYLOADFORMAT_BITS = "bits"
_PAYLOADFORMAT_FLOAT = "float"
_PAYLOADFORMAT_LONG = "long"
_PAYLOADFORMAT_REGISTER = "register"
_PAYLOADFORMAT_REGISTERS = "registers"
_PAYLOADFORMAT_STRING = "string"
_ALL_PAYLOADFORMATS = [
    _PAYLOADFORMAT_BIT,
    _PAYLOADFORMAT_BITS,
    _PAYLOADFORMAT_FLOAT,
    _PAYLOADFORMAT_LONG,
    _PAYLOADFORMAT_REGISTER,
    _PAYLOADFORMAT_REGISTERS,
    _PAYLOADFORMAT_STRING,
]

# ######################## #
# Modbus instrument object #
# ######################## #


[docs]class Instrument: """Instrument class for talking to instruments (slaves). Uses the Modbus RTU or ASCII protocols (via RS485 or RS232). Args: * port (str): The serial port name, for example ``/dev/ttyUSB0`` (Linux), ``/dev/tty.usbserial`` (OS X) or ``COM4`` (Windows). * slaveaddress (int): Slave address in the range 1 to 247 (use decimal numbers, not hex). Address 0 is for broadcast, and 248-255 are reserved. * mode (str): Mode selection. Can be MODE_RTU or MODE_ASCII. * close_port_after_each_call (bool): If the serial port should be closed after each call to the instrument. * debug (bool): Set this to :const:`True` to print the communication details """
[docs] def __init__( self, port, slaveaddress, mode=MODE_RTU, close_port_after_each_call=False, debug=False, ): """Initialize instrument and open corresponding serial port.""" self.address = slaveaddress """Slave address (int). Most often set by the constructor (see the class documentation). """ self.mode = mode """Slave mode (str), can be MODE_RTU or MODE_ASCII. Most often set by the constructor (see the class documentation). Changing this will not affect how other instruments use the same serial port. New in version 0.6. """ self.precalculate_read_size = True """If this is :const:`False`, the serial port reads until timeout instead of just reading a specific number of bytes. Defaults to :const:`True`. Changing this will not affect how other instruments use the same serial port. New in version 0.5. """ self.debug = debug """Set this to :const:`True` to print the communication details. Defaults to :const:`False`. Most often set by the constructor (see the class documentation). Changing this will not affect how other instruments use the same serial port. """ self.clear_buffers_before_each_transaction = True """If this is :const:`True`, the serial port read and write buffers are cleared before each request to the instrument, to avoid cumulative byte sync errors across multiple messages. Defaults to :const:`True`. Changing this will not affect how other instruments use the same serial port. New in version 1.0. """ self.close_port_after_each_call = close_port_after_each_call """If this is :const:`True`, the serial port will be closed after each call. Defaults to :const:`False`. Changing this will not affect how other instruments use the same serial port. Most often set by the constructor (see the class documentation). """ self.handle_local_echo = False """Set to to :const:`True` if your RS-485 adaptor has local echo enabled. Then the transmitted message will immeadiately appear at the receive line of the RS-485 adaptor. MinimalModbus will then read and discard this data, before reading the data from the slave. Defaults to :const:`False`. Changing this will not affect how other instruments use the same serial port. New in version 0.7. """ self.serial = None """The serial port object as defined by the pySerial module. Created by the constructor. Attributes that could be changed after initialisation: - port (str): Serial port name. - Most often set by the constructor (see the class documentation). - baudrate (int): Baudrate in Baud. - Defaults to 19200. - parity (probably int): Parity. See the pySerial module for documentation. - Defaults to serial.PARITY_NONE. - bytesize (int): Bytesize in bits. - Defaults to 8. - stopbits (int): The number of stopbits. - Defaults to 1. - timeout (float): Read timeout value in seconds. - Defaults to 0.05 s. - write_timeout (float): Write timeout value in seconds. - Defaults to 2.0 s. """ if port not in _serialports or not _serialports[port]: self._print_debug("Create serial port {}".format(port)) self.serial = _serialports[port] = serial.Serial( port=port, baudrate=19200, parity=serial.PARITY_NONE, bytesize=8, stopbits=1, timeout=0.05, write_timeout=2.0, ) else: self._print_debug("Serial port {} already exists".format(port)) self.serial = _serialports[port] if (self.serial.port is None) or (not self.serial.is_open): self._print_debug("Serial port {} is closed. Opening.".format(port)) self.serial.open() if self.close_port_after_each_call: self._print_debug("Closing serial port {}".format(port)) self.serial.close()
[docs] def __repr__(self): """Give string representation of the :class:`.Instrument` object.""" template = ( "{}.{}<id=0x{:x}, address={}, mode={}, close_port_after_each_call={}, " + "precalculate_read_size={}, clear_buffers_before_each_transaction={}, " + "handle_local_echo={}, debug={}, serial={}>" ) return template.format( self.__module__, self.__class__.__name__, id(self), self.address, self.mode, self.close_port_after_each_call, self.precalculate_read_size, self.clear_buffers_before_each_transaction, self.handle_local_echo, self.debug, self.serial, )
[docs] def _print_debug(self, text): if self.debug: _print_out("MinimalModbus debug mode. " + text)
# ################################# # # Methods for talking to the slave # # ################################# #
[docs] def read_bit(self, registeraddress, functioncode=2): """Read one bit from the slave (instrument). This is for a bit that has its individual address in the instrument. Args: * registeraddress (int): The slave register address (use decimal numbers, not hex). * functioncode (int): Modbus function code. Can be 1 or 2. Returns: The bit value 0 or 1 (int). Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [1, 2]) return self._generic_command( functioncode, registeraddress, number_of_bits=1, payloadformat=_PAYLOADFORMAT_BIT, )
[docs] def write_bit(self, registeraddress, value, functioncode=5): """Write one bit to the slave (instrument). This is for a bit that has its individual address in the instrument. Args: * registeraddress (int): The slave register address (use decimal numbers, not hex). * value (int or bool): 0 or 1, or True or False * functioncode (int): Modbus function code. Can be 5 or 15. Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [5, 15]) _check_int(value, minvalue=0, maxvalue=1, description="input value") self._generic_command( functioncode, registeraddress, value, number_of_bits=1, payloadformat=_PAYLOADFORMAT_BIT, )
[docs] def read_bits(self, registeraddress, number_of_bits, functioncode=2): """Read multiple bits from the slave (instrument). This is for bits that have individual addresses in the instrument. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * number_of_bits (int): Number of bits to read * functioncode (int): Modbus function code. Can be 1 or 2. Returns: A list of bit values 0 or 1 (int). The first value in the list is for the bit at the given address. Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [1, 2]) _check_int( number_of_bits, minvalue=1, maxvalue=_MAX_NUMBER_OF_BITS_TO_READ, description="number of bits", ) return self._generic_command( functioncode, registeraddress, number_of_bits=number_of_bits, payloadformat=_PAYLOADFORMAT_BITS, )
[docs] def write_bits(self, registeraddress, values): """Write multiple bits to the slave (instrument). This is for bits that have individual addresses in the instrument. Uses Modbus functioncode 15. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * values (list of int or bool): 0 or 1, or True or False. The first value in the list is for the bit at the given address. Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ if not isinstance(values, list): raise TypeError( 'The "values parameter" must be a list. Given: {0!r}'.format(values) ) # Note: The content of the list is checked at content conversion. _check_int( len(values), minvalue=1, maxvalue=_MAX_NUMBER_OF_BITS_TO_WRITE, description="length of input list", ) self._generic_command( 15, registeraddress, values, number_of_bits=len(values), payloadformat=_PAYLOADFORMAT_BITS, )
[docs] def read_register( self, registeraddress, number_of_decimals=0, functioncode=3, signed=False ): """Read an integer from one 16-bit register in the slave, possibly scaling it. The slave register can hold integer values in the range 0 to 65535 ("Unsigned INT16"). Args: * registeraddress (int): The slave register address (use decimal numbers, not hex). * number_of_decimals (int): The number of decimals for content conversion. * functioncode (int): Modbus function code. Can be 3 or 4. * signed (bool): Whether the data should be interpreted as unsigned or signed. .. note:: The parameter number_of_decimals was named numberOfDecimals before MinimalModbus 1.0 If a value of 77.0 is stored internally in the slave register as 770, then use ``number_of_decimals=1`` which will divide the received data by 10 before returning the value. Similarly ``number_of_decimals=2`` will divide the received data by 100 before returning the value. Some manufacturers allow negative values for some registers. Instead of an allowed integer range 0 to 65535, a range -32768 to 32767 is allowed. This is implemented as any received value in the upper range (32768 to 65535) is interpreted as negative value (in the range -32768 to -1). Use the parameter ``signed=True`` if reading from a register that can hold negative values. Then upper range data will be automatically converted into negative return values (two's complement). ============== ================== ================ =============== ``signed`` Data type in slave Alternative name Range ============== ================== ================ =============== :const:`False` Unsigned INT16 Unsigned short 0 to 65535 :const:`True` INT16 Short -32768 to 32767 ============== ================== ================ =============== Returns: The register data in numerical value (int or float). Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [3, 4]) _check_int( number_of_decimals, minvalue=0, maxvalue=_MAX_NUMBER_OF_DECIMALS, description="number of decimals", ) _check_bool(signed, description="signed") return self._generic_command( functioncode, registeraddress, number_of_decimals=number_of_decimals, number_of_registers=1, signed=signed, payloadformat=_PAYLOADFORMAT_REGISTER, )
[docs] def write_register( self, registeraddress, value, number_of_decimals=0, functioncode=16, signed=False, ): """Write an integer to one 16-bit register in the slave, possibly scaling it. The slave register can hold integer values in the range 0 to 65535 ("Unsigned INT16"). Args: * registeraddress (int): The slave register address (use decimal numbers, not hex). * value (int or float): The value to store in the slave register (might be scaled before sending). * number_of_decimals (int): The number of decimals for content conversion. * functioncode (int): Modbus function code. Can be 6 or 16. * signed (bool): Whether the data should be interpreted as unsigned or signed. .. note:: The parameter number_of_decimals was named numberOfDecimals before MinimalModbus 1.0 To store for example ``value=77.0``, use ``number_of_decimals=1`` if the slave register will hold it as 770 internally. This will multiply ``value`` by 10 before sending it to the slave register. Similarly ``number_of_decimals=2`` will multiply ``value`` by 100 before sending it to the slave register. As the largest number that can be written to a register is 0xFFFF = 65535, the ``value`` and ``number_of_decimals`` should max be 65535 when combined. So when using ``number_of_decimals=3`` the maximum ``value`` is 65.535. For discussion on negative values, the range and on alternative names, see :meth:`.read_register`. Use the parameter ``signed=True`` if writing to a register that can hold negative values. Then negative input will be automatically converted into upper range data (two's complement). Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [6, 16]) _check_int( number_of_decimals, minvalue=0, maxvalue=_MAX_NUMBER_OF_DECIMALS, description="number of decimals", ) _check_bool(signed, description="signed") _check_numerical(value, description="input value") self._generic_command( functioncode, registeraddress, value, number_of_decimals=number_of_decimals, number_of_registers=1, signed=signed, payloadformat=_PAYLOADFORMAT_REGISTER, )
[docs] def read_long( self, registeraddress, functioncode=3, signed=False, byteorder=BYTEORDER_BIG ): """Read a long integer (32 bits) from the slave. Long integers (32 bits = 4 bytes) are stored in two consecutive 16-bit registers in the slave. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * functioncode (int): Modbus function code. Can be 3 or 4. * signed (bool): Whether the data should be interpreted as unsigned or signed. * byteorder (int): How multi-register data should be interpreted. Defaults to BYTEORDER_BIG. ============== ================== ================ ========================== ``signed`` Data type in slave Alternative name Range ============== ================== ================ ========================== :const:`False` Unsigned INT32 Unsigned long 0 to 4294967295 :const:`True` INT32 Long -2147483648 to 2147483647 ============== ================== ================ ========================== Returns: The numerical value (int). Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [3, 4]) _check_bool(signed, description="signed") return self._generic_command( functioncode, registeraddress, number_of_registers=2, signed=signed, byteorder=byteorder, payloadformat=_PAYLOADFORMAT_LONG, )
[docs] def write_long(self, registeraddress, value, signed=False, byteorder=BYTEORDER_BIG): """Write a long integer (32 bits) to the slave. Long integers (32 bits = 4 bytes) are stored in two consecutive 16-bit registers in the slave. Uses Modbus function code 16. For discussion on number of bits, number of registers, the range and on alternative names, see :meth:`.read_long`. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * value (int or long): The value to store in the slave. * signed (bool): Whether the data should be interpreted as unsigned or signed. * byteorder (int): How multi-register data should be interpreted. Defaults to BYTEORDER_BIG. Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ MAX_VALUE_LONG = 4294967295 # Unsigned INT32 MIN_VALUE_LONG = -2147483648 # INT32 _check_int( value, minvalue=MIN_VALUE_LONG, maxvalue=MAX_VALUE_LONG, description="input value", ) _check_bool(signed, description="signed") self._generic_command( 16, registeraddress, value, number_of_registers=2, signed=signed, byteorder=byteorder, payloadformat=_PAYLOADFORMAT_LONG, )
[docs] def read_float( self, registeraddress, functioncode=3, number_of_registers=2, byteorder=BYTEORDER_BIG, ): r"""Read a floating point number from the slave. Floats are stored in two or more consecutive 16-bit registers in the slave. The encoding is according to the standard IEEE 754. There are differences in the byte order used by different manufacturers. A floating point value of 1.0 is encoded (in single precision) as 3f800000 (hex). In this implementation the data will be sent as ``'\x3f\x80'`` and ``'\x00\x00'`` to two consecutetive registers by default. Make sure to test that it makes sense for your instrument. If not, change the ``byteorder`` argument. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * functioncode (int): Modbus function code. Can be 3 or 4. * number_of_registers (int): The number of registers allocated for the float. Can be 2 or 4. * byteorder (int): How multi-register data should be interpreted. Defaults to BYTEORDER_BIG. .. note:: The parameter number_of_registers was named numberOfRegisters before MinimalModbus 1.0 ====================================== ================= =========== ================= Type of floating point number in slave Size Registers Range ====================================== ================= =========== ================= Single precision (binary32) 32 bits (4 bytes) 2 registers 1.4E-45 to 3.4E38 Double precision (binary64) 64 bits (8 bytes) 4 registers 5E-324 to 1.8E308 ====================================== ================= =========== ================= Returns: The numerical value (float). Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [3, 4]) _check_int( number_of_registers, minvalue=2, maxvalue=4, description="number of registers", ) return self._generic_command( functioncode, registeraddress, number_of_registers=number_of_registers, byteorder=byteorder, payloadformat=_PAYLOADFORMAT_FLOAT, )
[docs] def write_float( self, registeraddress, value, number_of_registers=2, byteorder=BYTEORDER_BIG ): """Write a floating point number to the slave. Floats are stored in two or more consecutive 16-bit registers in the slave. Uses Modbus function code 16. For discussion on precision, number of registers and on byte order, see :meth:`.read_float`. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * value (float or int): The value to store in the slave * number_of_registers (int): The number of registers allocated for the float. Can be 2 or 4. * byteorder (int): How multi-register data should be interpreted. Defaults to BYTEORDER_BIG. .. note:: The parameter number_of_registers was named numberOfRegisters before MinimalModbus 1.0 Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_numerical(value, description="input value") _check_int( number_of_registers, minvalue=2, maxvalue=4, description="number of registers", ) self._generic_command( 16, registeraddress, value, number_of_registers=number_of_registers, byteorder=byteorder, payloadformat=_PAYLOADFORMAT_FLOAT, )
[docs] def read_string(self, registeraddress, number_of_registers=16, functioncode=3): """Read an ASCII string from the slave. Each 16-bit register in the slave are interpreted as two characters (each 1 byte = 8 bits). For example 16 consecutive registers can hold 32 characters (32 bytes). International characters (Unicode/UTF-8) are not supported. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * number_of_registers (int): The number of registers allocated for the string. * functioncode (int): Modbus function code. Can be 3 or 4. .. note:: The parameter number_of_registers was named numberOfRegisters before MinimalModbus 1.0 Returns: The string (str). Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [3, 4]) _check_int( number_of_registers, minvalue=1, maxvalue=_MAX_NUMBER_OF_REGISTERS_TO_READ, description="number of registers for read string", ) return self._generic_command( functioncode, registeraddress, number_of_registers=number_of_registers, payloadformat=_PAYLOADFORMAT_STRING, )
[docs] def write_string(self, registeraddress, textstring, number_of_registers=16): """Write an ASCII string to the slave. Each 16-bit register in the slave are interpreted as two characters (each 1 byte = 8 bits). For example 16 consecutive registers can hold 32 characters (32 bytes). Uses Modbus function code 16. International characters (Unicode/UTF-8) are not supported. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * textstring (str): The string to store in the slave, must be ASCII. * number_of_registers (int): The number of registers allocated for the string. .. note:: The parameter number_of_registers was named numberOfRegisters before MinimalModbus 1.0 If the ``textstring`` is longer than the ``2*number_of_registers``, an error is raised. Shorter strings are padded with spaces. Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_int( number_of_registers, minvalue=1, maxvalue=_MAX_NUMBER_OF_REGISTERS_TO_WRITE, description="number of registers for write string", ) _check_string( textstring, "input string", minlength=1, maxlength=2 * number_of_registers, force_ascii=True, ) self._generic_command( 16, registeraddress, textstring, number_of_registers=number_of_registers, payloadformat=_PAYLOADFORMAT_STRING, )
[docs] def read_registers(self, registeraddress, number_of_registers, functioncode=3): """Read integers from 16-bit registers in the slave. The slave registers can hold integer values in the range 0 to 65535 ("Unsigned INT16"). Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * number_of_registers (int): The number of registers to read, max 125 registers. * functioncode (int): Modbus function code. Can be 3 or 4. .. note:: The parameter number_of_registers was named numberOfRegisters before MinimalModbus 1.0 Any scaling of the register data, or converting it to negative number (two's complement) must be done manually. Returns: The register data (a list of int). The first value in the list is for the register at the given address. Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ _check_functioncode(functioncode, [3, 4]) _check_int( number_of_registers, minvalue=1, maxvalue=_MAX_NUMBER_OF_REGISTERS_TO_READ, description="number of registers", ) return self._generic_command( functioncode, registeraddress, number_of_registers=number_of_registers, payloadformat=_PAYLOADFORMAT_REGISTERS, )
[docs] def write_registers(self, registeraddress, values): """Write integers to 16-bit registers in the slave. The slave register can hold integer values in the range 0 to 65535 ("Unsigned INT16"). Uses Modbus function code 16. The number of registers that will be written is defined by the length of the ``values`` list. Args: * registeraddress (int): The slave register start address (use decimal numbers, not hex). * values (list of int): The values to store in the slave registers, max 123 values. The first value in the list is for the register at the given address. .. note:: The parameter number_of_registers was named numberOfRegisters before MinimalModbus 1.0 Any scaling of the register data, or converting it to negative number (two's complement) must be done manually. Returns: None Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ if not isinstance(values, list): raise TypeError( 'The "values parameter" must be a list. Given: {0!r}'.format(values) ) _check_int( len(values), minvalue=1, maxvalue=_MAX_NUMBER_OF_REGISTERS_TO_WRITE, description="length of input list", ) # Note: The content of the list is checked at content conversion. self._generic_command( 16, registeraddress, values, number_of_registers=len(values), payloadformat=_PAYLOADFORMAT_REGISTERS, )
# ############### # # Generic command # # ############### #
[docs] def _generic_command( self, functioncode, registeraddress, value=None, number_of_decimals=0, number_of_registers=0, number_of_bits=0, signed=False, byteorder=BYTEORDER_BIG, payloadformat=None, ): """Perform generic command for reading and writing registers and bits. Args: * functioncode (int): Modbus function code. * registeraddress (int): The register address (use decimal numbers, not hex). * value (numerical or string or None or list of int): The value to store in the register. Depends on payloadformat. * number_of_decimals (int): The number of decimals for content conversion. Only for a single register. * number_of_registers (int): The number of registers to read/write. Only certain values allowed, depends on payloadformat. * number_of_bits (int):T he number of registers to read/write. * signed (bool): Whether the data should be interpreted as unsigned or signed. Only for a single register or for payloadformat='long'. * byteorder (int): How multi-register data should be interpreted. * payloadformat (None or string): Any of the _PAYLOADFORMAT_* values If a value of 77.0 is stored internally in the slave register as 770, then use ``number_of_decimals=1`` which will divide the received data from the slave by 10 before returning the value. Similarly ``number_of_decimals=2`` will divide the received data by 100 before returning the value. Same functionality is also used when writing data to the slave. Returns: The register data in numerical value (int or float), or the bit value 0 or 1 (int), or ``None``. Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) """ ALL_ALLOWED_FUNCTIONCODES = [1, 2, 3, 4, 5, 6, 15, 16] ALLOWED_FUNCTIONCODES = {} ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_BIT] = [1, 2, 5, 15] ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_BITS] = [1, 2, 15] ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_REGISTER] = [3, 4, 6, 16] ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_FLOAT] = [3, 4, 16] ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_STRING] = [3, 4, 16] ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_LONG] = [3, 4, 16] ALLOWED_FUNCTIONCODES[_PAYLOADFORMAT_REGISTERS] = [3, 4, 16] # Check input values _check_functioncode(functioncode, ALL_ALLOWED_FUNCTIONCODES) _check_registeraddress(registeraddress) _check_int( number_of_decimals, minvalue=0, maxvalue=_MAX_NUMBER_OF_DECIMALS, description="number of decimals", ) _check_int( number_of_registers, minvalue=0, maxvalue=max( _MAX_NUMBER_OF_REGISTERS_TO_READ, _MAX_NUMBER_OF_REGISTERS_TO_WRITE ), description="number of registers", ) _check_int( number_of_bits, minvalue=0, maxvalue=max(_MAX_NUMBER_OF_BITS_TO_READ, _MAX_NUMBER_OF_BITS_TO_WRITE), description="number of bits", ) _check_bool(signed, description="signed") _check_int( byteorder, minvalue=0, maxvalue=_MAX_BYTEORDER_VALUE, description="byteorder", ) if payloadformat not in _ALL_PAYLOADFORMATS: if not isinstance(payloadformat, str): raise TypeError( "The payload format should be a string. Given: {!r}".format( payloadformat ) ) raise ValueError( "Wrong payload format variable. Given: {!r}".format(payloadformat) ) number_of_register_bytes = number_of_registers * _NUMBER_OF_BYTES_PER_REGISTER # Check combinations: Payload format and functioncode if functioncode not in ALLOWED_FUNCTIONCODES[payloadformat]: raise ValueError( "Wrong functioncode for payloadformat " + "{!r}. Given: {!r}.".format(payloadformat, functioncode) ) # Check combinations: signed if signed: if payloadformat not in [_PAYLOADFORMAT_REGISTER, _PAYLOADFORMAT_LONG]: raise ValueError( 'The "signed" parameter can not be used for this payload format. ' + "Given format: {!r}.".format(payloadformat) ) # Check combinations: number_of_decimals if number_of_decimals > 0: if payloadformat != _PAYLOADFORMAT_REGISTER: raise ValueError( 'The "number_of_decimals" parameter can not be used for this payload format. ' + "Given format: {0!r}.".format(payloadformat) ) # Check combinations: byteorder if byteorder: if payloadformat not in [_PAYLOADFORMAT_FLOAT, _PAYLOADFORMAT_LONG]: raise ValueError( 'The "byteorder" parameter can not be used for this payload format. ' + "Given format: {0!r}.".format(payloadformat) ) # Check combinations: number of bits if payloadformat == _PAYLOADFORMAT_BIT: if number_of_bits != 1: raise ValueError( "For BIT payload format the number of bits should be 1. " + "Given: {0!r}.".format(number_of_bits) ) elif payloadformat == _PAYLOADFORMAT_BITS: if number_of_bits < 1: raise ValueError( "For BITS payload format the number of bits should be at least 1. " + "Given: {0!r}.".format(number_of_bits) ) elif number_of_bits: raise ValueError( "The number_of_bits parameter is wrong for payload format " + "{0!r}. Given: {0!r}.".format(payloadformat, number_of_bits) ) # Check combinations: Number of registers if functioncode in [1, 2, 5, 15] and number_of_registers: raise ValueError( "The number_of_registers is not valid for this function code. " + "number_of_registers: {0!r}, functioncode {1}.".format( number_of_registers, functioncode ) ) elif functioncode in [3, 4, 16] and not number_of_registers: raise ValueError( "The number_of_registers must be > 0 for functioncode " + "{}.".format(functioncode) ) elif functioncode == 6 and number_of_registers != 1: raise ValueError( "The number_of_registers must be 1 for functioncode 6. " + "Given: {}.".format(number_of_registers) ) if ( functioncode == 16 and payloadformat == _PAYLOADFORMAT_REGISTER and number_of_registers != 1 ): raise ValueError( "Wrong number_of_registers when writing to a " + "single register. Given {0!r}.".format(number_of_registers) ) # Note: For function code 16 there is checking also in the content # conversion functions. # Check combinations: Value if functioncode in [5, 6, 15, 16] and value is None: raise ValueError( "The input value must be given for this function code. " + "Given {0!r} and {1}.".format(value, functioncode) ) elif functioncode in [1, 2, 3, 4] and value is not None: raise ValueError( "The input value should not be given for this function code. " + "Given {0!r} and {1}.".format(value, functioncode) ) # Check combinations: Value for numerical if functioncode == 16 and payloadformat in [ _PAYLOADFORMAT_REGISTER, _PAYLOADFORMAT_FLOAT, _PAYLOADFORMAT_LONG, ]: _check_numerical(value, description="input value") if functioncode == 6 and payloadformat == _PAYLOADFORMAT_REGISTER: _check_numerical(value, description="input value") # Check combinations: Value for string if functioncode == 16 and payloadformat == _PAYLOADFORMAT_STRING: _check_string( value, "input string", minlength=1, maxlength=number_of_register_bytes ) # Note: The string might be padded later, so the length might be shorter # than number_of_register_bytes. # Check combinations: Value for registers if functioncode == 16 and payloadformat == _PAYLOADFORMAT_REGISTERS: if not isinstance(value, list): raise TypeError( "The value parameter for payloadformat REGISTERS must be a list. " + "Given {0!r}.".format(value) ) if len(value) != number_of_registers: raise ValueError( "The list length does not match number of registers. " + "List: {0!r}, Number of registers: {1!r}.".format( value, number_of_registers ) ) # Check combinations: Value for bit if functioncode in [5, 15] and payloadformat == _PAYLOADFORMAT_BIT: _check_int( value, minvalue=0, maxvalue=1, description="input value for payload format BIT", ) # Check combinations: Value for bits if functioncode == 15 and payloadformat == _PAYLOADFORMAT_BITS: if not isinstance(value, list): raise TypeError( "The value parameter for payloadformat BITS must be a list. " + "Given {0!r}.".format(value) ) if len(value) != number_of_bits: raise ValueError( "The list length does not match number of bits. " + "List: {0!r}, Number of registers: {1!r}.".format( value, number_of_registers ) ) # Create payload payload_to_slave = _create_payload( functioncode, registeraddress, value, number_of_decimals, number_of_registers, number_of_bits, signed, byteorder, payloadformat, ) # Communicate with instrument payload_from_slave = self._perform_command(functioncode, payload_to_slave) # Parse response payload return _parse_payload( payload_from_slave, functioncode, registeraddress, value, number_of_decimals, number_of_registers, number_of_bits, signed, byteorder, payloadformat, )
# #################################### # # Communication implementation details # # #################################### #
[docs] def _perform_command(self, functioncode, payload_to_slave): """Perform the command having the *functioncode*. Args: * functioncode (int): The function code for the command to be performed. Can for example be 'Write register' = 16. * payload_to_slave (str): Data to be transmitted to the slave (will be embedded in slaveaddress, CRC etc) Returns: The extracted data payload from the slave (a string). It has been stripped of CRC etc. Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) Makes use of the :meth:`_communicate` method. The request is generated with the :func:`_embed_payload` function, and the parsing of the response is done with the :func:`_extract_payload` function. """ DEFAULT_NUMBER_OF_BYTES_TO_READ = 1000 _check_functioncode(functioncode, None) _check_string(payload_to_slave, description="payload") # Build request request = _embed_payload( self.address, self.mode, functioncode, payload_to_slave ) # Calculate number of bytes to read number_of_bytes_to_read = DEFAULT_NUMBER_OF_BYTES_TO_READ if self.precalculate_read_size: try: number_of_bytes_to_read = _predict_response_size( self.mode, functioncode, payload_to_slave ) except Exception: if self.debug: template = ( "Could not precalculate response size for Modbus {} mode. " + "Will read {} bytes. Request: {!r}" ) self._print_debug( template.format(self.mode, number_of_bytes_to_read, request) ) # Communicate response = self._communicate(request, number_of_bytes_to_read) # Extract payload payload_from_slave = _extract_payload( response, self.address, self.mode, functioncode ) return payload_from_slave
[docs] def _communicate(self, request, number_of_bytes_to_read): """Talk to the slave via a serial port. Args: request (str): The raw request that is to be sent to the slave. number_of_bytes_to_read (int): number of bytes to read Returns: The raw data (string) returned from the slave. Raises: TypeError, ValueError, ModbusException, serial.SerialException (inherited from IOError) Note that the answer might have strange ASCII control signs, which makes it difficult to print it in the promt (messes up a bit). Use repr() to make the string printable (shows ASCII values for control signs.) Will block until reaching *number_of_bytes_to_read* or timeout. If the attribute :attr:`Instrument.debug` is :const:`True`, the communication details are printed. If the attribute :attr:`Instrument.close_port_after_each_call` is :const:`True` the serial port is closed after each call. Timing:: Request from master (Master is writing) | | Response from slave (Master is reading) | | --------R-------W-----------------------------R-------W----------------------------- | | | | |<------- Roundtrip time ------>| | | -->|-----|<----- Silent period The resolution for Python's time.time() is lower on Windows than on Linux. It is about 16 ms on Windows according to https://stackoverflow.com/questions/157359/accurate-timestamping-in-python-logging For Python3, the information sent to and from pySerial should be of the type bytes. This is taken care of automatically by MinimalModbus. """ _check_string(request, minlength=1, description="request") _check_int(number_of_bytes_to_read) self._print_debug( "Will write to instrument (expecting {} bytes back): {!r} ({})".format( number_of_bytes_to_read, request, _hexlify(request) ) ) if not self.serial.is_open: self._print_debug("Opening port {}".format(self.serial.port)) self.serial.open() if self.clear_buffers_before_each_transaction: self._print_debug( "Clearing serial buffers for port {}".format(self.serial.port) ) self.serial.reset_input_buffer() self.serial.reset_output_buffer() if sys.version_info[0] > 2: request = bytes( request, encoding="latin1" ) # Convert types to make it Python3 compatible # Sleep to make sure 3.5 character times have passed minimum_silent_period = _calculate_minimum_silent_period(self.serial.baudrate) time_since_read = _now() - _latest_read_times.get(self.serial.port, 0) if time_since_read < minimum_silent_period: sleep_time = minimum_silent_period - time_since_read if self.debug: template = ( "Sleeping {:.2f} ms before sending. " + "Minimum silent period: {:.2f} ms, time since read: {:.2f} ms." ) text = template.format( sleep_time * _SECONDS_TO_MILLISECONDS, minimum_silent_period * _SECONDS_TO_MILLISECONDS, time_since_read * _SECONDS_TO_MILLISECONDS, ) self._print_debug(text) time.sleep(sleep_time) elif self.debug: template = ( "No sleep required before write. " + "Time since previous read: {:.2f} ms, minimum silent period: {:.2f} ms." ) text = template.format( time_since_read * _SECONDS_TO_MILLISECONDS, minimum_silent_period * _SECONDS_TO_MILLISECONDS, ) self._print_debug(text) # Write request latest_write_time = _now() self.serial.write(request) # Read and discard local echo if self.handle_local_echo: local_echo_to_discard = self.serial.read(len(request)) if self.debug: template = "Discarding this local echo: {!r} ({} bytes)." text = template.format( local_echo_to_discard, len(local_echo_to_discard) ) self._print_debug(text) if local_echo_to_discard != request: template = ( "Local echo handling is enabled, but the local echo does " + "not match the sent request. " + "Request: {!r} ({} bytes), local echo: {!r} ({} bytes)." ) text = template.format( request, len(request), local_echo_to_discard, len(local_echo_to_discard), ) raise LocalEchoError(text) # Read response answer = self.serial.read(number_of_bytes_to_read) _latest_read_times[self.serial.port] = _now() if self.close_port_after_each_call: self._print_debug("Closing port {}".format(self.serial.port)) self.serial.close() if sys.version_info[0] > 2: # Convert types to make it Python3 compatible answer = str(answer, encoding="latin1") if self.debug: template = ( "Response from instrument: {!r} ({}) ({} bytes), " + "roundtrip time: {:.1f} ms. Timeout for reading: {:.1f} ms.\n" ) text = template.format( answer, _hexlify(answer), len(answer), (_latest_read_times.get(self.serial.port, 0) - latest_write_time) * _SECONDS_TO_MILLISECONDS, self.serial.timeout * _SECONDS_TO_MILLISECONDS, ) self._print_debug(text) if not answer: raise NoResponseError("No communication with the instrument (no answer)") return answer
# For backward compatibility _performCommand = _perform_command
# ########## # # Exceptions # # ########## #
[docs]class ModbusException(IOError): """Base class for Modbus communication exceptions. Inherits from IOError, which is an alias for OSError in Python3. """
[docs]class SlaveReportedException(ModbusException): """Base class for exceptions that the slave (instrument) reports."""
[docs]class SlaveDeviceBusyError(SlaveReportedException): """The slave is busy processing some command."""
[docs]class NegativeAcknowledgeError(SlaveReportedException): """The slave can not fulfil the programming request. This typically happens when using function code 13 or 14 decimal. """
[docs]class IllegalRequestError(SlaveReportedException): """The slave has received an illegal request."""
[docs]class MasterReportedException(ModbusException): """Base class for exceptions that the master (computer) detects."""
[docs]class NoResponseError(MasterReportedException): """No response from the slave."""
[docs]class LocalEchoError(MasterReportedException): """There is some problem with the local echo."""
[docs]class InvalidResponseError(MasterReportedException): """The response does not fulfill the Modbus standad, for example wrong checksum."""
# ################ # # Payload handling # # ################ #
[docs]def _create_payload( functioncode, registeraddress, value, number_of_decimals, number_of_registers, number_of_bits, signed, byteorder, payloadformat, ): """Create the payload. Error checking should have been done before calling this function. For argument descriptions, see the _generic_command() method. """ if functioncode in [1, 2]: return _num_to_twobyte_string(registeraddress) + _num_to_twobyte_string( number_of_bits ) if functioncode in [3, 4]: return _num_to_twobyte_string(registeraddress) + _num_to_twobyte_string( number_of_registers ) if functioncode == 5: return _num_to_twobyte_string(registeraddress) + _bit_to_bytestring(value) if functioncode == 6: return _num_to_twobyte_string(registeraddress) + _num_to_twobyte_string( value, number_of_decimals, signed=signed ) if functioncode == 15: if payloadformat == _PAYLOADFORMAT_BIT: bitlist = [value] else: bitlist = value return ( _num_to_twobyte_string(registeraddress) + _num_to_twobyte_string(number_of_bits) + _num_to_onebyte_string( _calculate_number_of_bytes_for_bits(number_of_bits) ) + _bits_to_bytestring(bitlist) ) if functioncode == 16: if payloadformat == _PAYLOADFORMAT_REGISTER: registerdata = _num_to_twobyte_string( value, number_of_decimals, signed=signed ) elif payloadformat == _PAYLOADFORMAT_STRING: registerdata = _textstring_to_bytestring(value, number_of_registers) elif payloadformat == _PAYLOADFORMAT_LONG: registerdata = _long_to_bytestring( value, signed, number_of_registers, byteorder ) elif payloadformat == _PAYLOADFORMAT_FLOAT: registerdata = _float_to_bytestring(value, number_of_registers, byteorder) elif payloadformat == _PAYLOADFORMAT_REGISTERS: registerdata = _valuelist_to_bytestring(value, number_of_registers) assert len(registerdata) == number_of_registers * _NUMBER_OF_BYTES_PER_REGISTER return ( _num_to_twobyte_string(registeraddress) + _num_to_twobyte_string(number_of_registers) + _num_to_onebyte_string(len(registerdata)) + registerdata ) raise ValueError("Wrong function code: " + str(functioncode))
[docs]def _parse_payload( payload, functioncode, registeraddress, value, number_of_decimals, number_of_registers, number_of_bits, signed, byteorder, payloadformat, ): _check_response_payload( payload, functioncode, registeraddress, value, number_of_decimals, number_of_registers, number_of_bits, signed, byteorder, payloadformat, ) if functioncode in [1, 2]: registerdata = payload[_NUMBER_OF_BYTES_BEFORE_REGISTERDATA:] if payloadformat == _PAYLOADFORMAT_BIT: return _bytestring_to_bits(registerdata, number_of_bits)[0] elif payloadformat == _PAYLOADFORMAT_BITS: return _bytestring_to_bits(registerdata, number_of_bits) if functioncode in [3, 4]: registerdata = payload[_NUMBER_OF_BYTES_BEFORE_REGISTERDATA:] if payloadformat == _PAYLOADFORMAT_STRING: return _bytestring_to_textstring(registerdata, number_of_registers) elif payloadformat == _PAYLOADFORMAT_LONG: return _bytestring_to_long( registerdata, signed, number_of_registers, byteorder ) elif payloadformat == _PAYLOADFORMAT_FLOAT: return _bytestring_to_float(registerdata, number_of_registers, byteorder) elif payloadformat == _PAYLOADFORMAT_REGISTERS: return _bytestring_to_valuelist(registerdata, number_of_registers) elif payloadformat == _PAYLOADFORMAT_REGISTER: return _twobyte_string_to_num( registerdata, number_of_decimals, signed=signed )
[docs]def _embed_payload(slaveaddress, mode, functioncode, payloaddata): """Build a request from the slaveaddress, the function code and the payload data. Args: * slaveaddress (int): The address of the slave. * mode (str): The modbus protcol mode (MODE_RTU or MODE_ASCII) * functioncode (int): The function code for the command to be performed. Can for example be 16 (Write register). * payloaddata (str): The byte string to be sent to the slave. Returns: The built (raw) request string for sending to the slave (including CRC etc). Raises: ValueError, TypeError. The resulting request has the format: * RTU Mode: slaveaddress byte + functioncode byte + payloaddata + CRC (which is two bytes). * ASCII Mode: header (:) + slaveaddress (2 characters) + functioncode (2 characters) + payloaddata + LRC (which is two characters) + footer (CRLF) The LRC or CRC is calculated from the byte string made up of slaveaddress + functioncode + payloaddata. The header, LRC/CRC, and footer are excluded from the calculation. """ _check_slaveaddress(slaveaddress) _check_mode(mode) _check_functioncode(functioncode, None) _check_string(payloaddata, description="payload") first_part = ( _num_to_onebyte_string(slaveaddress) + _num_to_onebyte_string(functioncode) + payloaddata ) if mode == MODE_ASCII: request = ( _ASCII_HEADER + _hexencode(first_part) + _hexencode(_calculate_lrc_string(first_part)) + _ASCII_FOOTER ) else: request = first_part + _calculate_crc_string(first_part) return request
[docs]def _extract_payload(response, slaveaddress, mode, functioncode): """Extract the payload data part from the slave's response. Args: * response (str): The raw response byte string from the slave. This is different for RTU and ASCII. * slaveaddress (int): The adress of the slave. Used here for error checking only. * mode (str): The modbus protcol mode (MODE_RTU or MODE_ASCII) * functioncode (int): Used here for error checking only. Returns: The payload part of the *response* string. Conversion from Modbus ASCII has been done if applicable. Raises: ValueError, TypeError, ModbusException (or subclasses). Raises an exception if there is any problem with the received address, the functioncode or the CRC. The received response should have the format: * RTU Mode: slaveaddress byte + functioncode byte + payloaddata + CRC (which is two bytes) * ASCII Mode: header (:) + slaveaddress byte + functioncode byte + payloaddata + LRC (which is two characters) + footer (CRLF) For development purposes, this function can also be used to extract the payload from the request sent TO the slave. """ # Number of bytes before the response payload (in stripped response) NUMBER_OF_RESPONSE_STARTBYTES = 2 NUMBER_OF_CRC_BYTES = 2 NUMBER_OF_LRC_BYTES = 1 MINIMAL_RESPONSE_LENGTH_RTU = NUMBER_OF_RESPONSE_STARTBYTES + NUMBER_OF_CRC_BYTES MINIMAL_RESPONSE_LENGTH_ASCII = 9 # Argument validity testing (ValueError/TypeError at lib programming error) _check_string(response, description="response") _check_slaveaddress(slaveaddress) _check_mode(mode) _check_functioncode(functioncode, None) plainresponse = response # Validate response length if mode == MODE_ASCII: if len(response) < MINIMAL_RESPONSE_LENGTH_ASCII: raise InvalidResponseError( "Too short Modbus ASCII response (minimum length {} bytes). Response: {!r}".format( MINIMAL_RESPONSE_LENGTH_ASCII, response ) ) elif len(response) < MINIMAL_RESPONSE_LENGTH_RTU: raise InvalidResponseError( "Too short Modbus RTU response (minimum length {} bytes). Response: {!r}".format( MINIMAL_RESPONSE_LENGTH_RTU, response ) ) if mode == MODE_ASCII: # Validate the ASCII header and footer. if response[_BYTEPOSITION_FOR_ASCII_HEADER] != _ASCII_HEADER: raise InvalidResponseError( "Did not find header " + "({!r}) as start of ASCII response. The plain response is: {!r}".format( _ASCII_HEADER, response ) ) elif response[-len(_ASCII_FOOTER) :] != _ASCII_FOOTER: raise InvalidResponseError( "Did not find footer " + "({!r}) as end of ASCII response. The plain response is: {!r}".format( _ASCII_FOOTER, response ) ) # Strip ASCII header and footer response = response[1:-2] if len(response) % 2 != 0: template = ( "Stripped ASCII frames should have an even number of bytes, but is {} bytes. " + "The stripped response is: {!r} (plain response: {!r})" ) raise InvalidResponseError( template.format(len(response), response, plainresponse) ) # Convert the ASCII (stripped) response string to RTU-like response string response = _hexdecode(response) # Validate response checksum if mode == MODE_ASCII: calculate_checksum = _calculate_lrc_string number_of_checksum_bytes = NUMBER_OF_LRC_BYTES else: calculate_checksum = _calculate_crc_string number_of_checksum_bytes = NUMBER_OF_CRC_BYTES received_checksum = response[-number_of_checksum_bytes:] response_without_checksum = response[0 : (len(response) - number_of_checksum_bytes)] calculated_checksum = calculate_checksum(response_without_checksum) if received_checksum != calculated_checksum: template = ( "Checksum error in {} mode: {!r} instead of {!r} . The response " + "is: {!r} (plain response: {!r})" ) text = template.format( mode, received_checksum, calculated_checksum, response, plainresponse ) raise InvalidResponseError(text) # Check slave address responseaddress = ord(response[_BYTEPOSITION_FOR_SLAVEADDRESS]) if responseaddress != slaveaddress: raise InvalidResponseError( "Wrong return slave address: {} instead of {}. The response is: {!r}".format( responseaddress, slaveaddress, response ) ) # Check if slave indicates error _check_response_slaveerrorcode(response) # Check function code received_functioncode = ord(response[_BYTEPOSITION_FOR_FUNCTIONCODE]) if received_functioncode != functioncode: raise InvalidResponseError( "Wrong functioncode: {} instead of {}. The response is: {!r}".format( received_functioncode, functioncode, response ) ) # Read data payload first_databyte_number = NUMBER_OF_RESPONSE_STARTBYTES if mode == MODE_ASCII: last_databyte_number = len(response) - NUMBER_OF_LRC_BYTES else: last_databyte_number = len(response) - NUMBER_OF_CRC_BYTES payload = response[first_databyte_number:last_databyte_number] return payload
# ###################################### # # Serial communication utility functions # # ###################################### #
[docs]def _predict_response_size(mode, functioncode, payload_to_slave): """Calculate the number of bytes that should be received from the slave. Args: * mode (str): The modbus protcol mode (MODE_RTU or MODE_ASCII) * functioncode (int): Modbus function code. * payload_to_slave (str): The raw request that is to be sent to the slave (not hex encoded string) Returns: The preducted number of bytes (int) in the response. Raises: ValueError, TypeError. """ MIN_PAYLOAD_LENGTH = 4 # For implemented functioncodes here BYTERANGE_FOR_GIVEN_SIZE = slice(2, 4) # Within the payload NUMBER_OF_PAYLOAD_BYTES_IN_WRITE_CONFIRMATION = 4 NUMBER_OF_PAYLOAD_BYTES_FOR_BYTECOUNTFIELD = 1 RTU_TO_ASCII_PAYLOAD_FACTOR = 2 NUMBER_OF_RTU_RESPONSE_STARTBYTES = 2 NUMBER_OF_RTU_RESPONSE_ENDBYTES = 2 NUMBER_OF_ASCII_RESPONSE_STARTBYTES = 5 NUMBER_OF_ASCII_RESPONSE_ENDBYTES = 4 # Argument validity testing _check_mode(mode) _check_functioncode(functioncode, None) _check_string(payload_to_slave, description="payload", minlength=MIN_PAYLOAD_LENGTH) # Calculate payload size if functioncode in [5, 6, 15, 16]: response_payload_size = NUMBER_OF_PAYLOAD_BYTES_IN_WRITE_CONFIRMATION elif functioncode in [1, 2, 3, 4]: given_size = _twobyte_string_to_num(payload_to_slave[BYTERANGE_FOR_GIVEN_SIZE]) if functioncode in [1, 2]: # Algorithm from MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b number_of_inputs = given_size response_payload_size = ( NUMBER_OF_PAYLOAD_BYTES_FOR_BYTECOUNTFIELD + number_of_inputs // 8 + (1 if number_of_inputs % 8 else 0) ) elif functioncode in [3, 4]: number_of_registers = given_size response_payload_size = ( NUMBER_OF_PAYLOAD_BYTES_FOR_BYTECOUNTFIELD + number_of_registers * _NUMBER_OF_BYTES_PER_REGISTER ) else: raise ValueError( "Wrong functioncode: {}. The payload is: {!r}".format( functioncode, payload_to_slave ) ) # Calculate number of bytes to read if mode == MODE_ASCII: return ( NUMBER_OF_ASCII_RESPONSE_STARTBYTES + response_payload_size * RTU_TO_ASCII_PAYLOAD_FACTOR + NUMBER_OF_ASCII_RESPONSE_ENDBYTES ) else: return ( NUMBER_OF_RTU_RESPONSE_STARTBYTES + response_payload_size + NUMBER_OF_RTU_RESPONSE_ENDBYTES )
[docs]def _calculate_minimum_silent_period(baudrate): """Calculate the silent period length between messages. It should correspond to the time to send 3.5 characters. Args: baudrate (numerical): The baudrate for the serial port Returns: The number of seconds (float) that should pass between each message on the bus. Raises: ValueError, TypeError. """ # Avoid division by zero _check_numerical(baudrate, minvalue=1, description="baudrate") BITTIMES_PER_CHARACTERTIME = 11 MINIMUM_SILENT_CHARACTERTIMES = 3.5 MINIMUM_SILENT_TIME_SECONDS = 0.00175 # See Modbus standard bittime = 1 / float(baudrate) return max( bittime * BITTIMES_PER_CHARACTERTIME * MINIMUM_SILENT_CHARACTERTIMES, MINIMUM_SILENT_TIME_SECONDS, )
# ########################## # # String and num conversions # # ########################## #
[docs]def _num_to_onebyte_string(inputvalue): """Convert a numerical value to a one-byte string. Args: inputvalue (int): The value to be converted. Should be >=0 and <=255. Returns: A one-byte string created by chr(inputvalue). Raises: TypeError, ValueError """ _check_int(inputvalue, minvalue=0, maxvalue=0xFF) return chr(inputvalue)
[docs]def _num_to_twobyte_string(value, number_of_decimals=0, lsb_first=False, signed=False): r"""Convert a numerical value to a two-byte string, possibly scaling it. Args: * value (float or int): The numerical value to be converted. * number_of_decimals (int): Number of decimals, 0 or more, for scaling. * lsb_first (bool): Whether the least significant byte should be first in the resulting string. * signed (bool): Whether negative values should be accepted. Returns: A two-byte string. Raises: TypeError, ValueError. Gives DeprecationWarning instead of ValueError for some values in Python 2.6. Use ``number_of_decimals=1`` to multiply ``value`` by 10 before sending it to the slave register. Similarly ``number_of_decimals=2`` will multiply ``value`` by 100 before sending it to the slave register. Use the parameter ``signed=True`` if making a bytestring that can hold negative values. Then negative input will be automatically converted into upper range data (two's complement). The byte order is controlled by the ``lsb_first`` parameter, as seen here: ======================= ============= ==================================== ``lsb_first`` parameter Endianness Description ======================= ============= ==================================== False (default) Big-endian Most significant byte is sent first True Little-endian Least significant byte is sent first ======================= ============= ==================================== For example: To store for example value=77.0, use ``number_of_decimals = 1`` if the register will hold it as 770 internally. The value 770 (dec) is 0302 (hex), where the most significant byte is 03 (hex) and the least significant byte is 02 (hex). With ``lsb_first = False``, the most significant byte is given first why the resulting string is ``\x03\x02``, which has the length 2. """ _check_numerical(value, description="inputvalue") _check_int( number_of_decimals, minvalue=0, maxvalue=_MAX_NUMBER_OF_DECIMALS, description="number of decimals", ) _check_bool(lsb_first, description="lsb_first") _check_bool(signed, description="signed parameter") multiplier = 10 ** number_of_decimals integer = int(float(value) * multiplier) if lsb_first: formatcode = "<" # Little-endian else: formatcode = ">" # Big-endian if signed: formatcode += "h" # (Signed) short (2 bytes) else: formatcode += "H" # Unsigned short (2 bytes) outstring = _pack(formatcode, integer) assert len(outstring) == 2 return outstring
[docs]def _twobyte_string_to_num(bytestring, number_of_decimals=0, signed=False): r"""Convert a two-byte string to a numerical value, possibly scaling it. Args: * bytestring (str): A string of length 2. * number_of_decimals (int): The number of decimals. Defaults to 0. * signed (bol): Whether large positive values should be interpreted as negative values. Returns: The numerical value (int or float) calculated from the ``bytestring``. Raises: TypeError, ValueError Use the parameter ``signed=True`` if converting a bytestring that can hold negative values. Then upper range data will be automatically converted into negative return values (two's complement). Use ``number_of_decimals=1`` to divide the received data by 10 before returning the value. Similarly ``number_of_decimals=2`` will divide the received data by 100 before returning the value. The byte order is big-endian, meaning that the most significant byte is sent first. For example: A string ``\x03\x02`` (which has the length 2) corresponds to 0302 (hex) = 770 (dec). If ``number_of_decimals = 1``, then this is converted to 77.0 (float). """ _check_string(bytestring, minlength=2, maxlength=2, description="bytestring") _check_int( number_of_decimals, minvalue=0, maxvalue=_MAX_NUMBER_OF_DECIMALS, description="number of decimals", ) _check_bool(signed, description="signed parameter") formatcode = ">" # Big-endian if signed: formatcode += "h" # (Signed) short (2 bytes) else: formatcode += "H" # Unsigned short (2 bytes) fullregister = _unpack(formatcode, bytestring) if number_of_decimals == 0: return fullregister divisor = 10 ** number_of_decimals return fullregister / float(divisor)
[docs]def _long_to_bytestring( value, signed=False, number_of_registers=2, byteorder=BYTEORDER_BIG ): """Convert a long integer to a bytestring. Long integers (32 bits = 4 bytes) are stored in two consecutive 16-bit registers in the slave. Args: * value (int): The numerical value to be converted. * signed (bool): Whether large positive values should be interpreted as negative values. * number_of_registers (int): Should be 2. For error checking only. * byteorder (int): How multi-register data should be interpreted. Returns: A bytestring (4 bytes). Raises: TypeError, ValueError """ _check_int(value, description="inputvalue") _check_bool(signed, description="signed parameter") _check_int( number_of_registers, minvalue=2, maxvalue=2, description="number of registers" ) _check_int( byteorder, minvalue=0, maxvalue=_MAX_BYTEORDER_VALUE, description="byteorder" ) if byteorder in [BYTEORDER_BIG, BYTEORDER_BIG_SWAP]: formatcode = ">" else: formatcode = "<" if signed: formatcode += "l" # (Signed) long (4 bytes) else: formatcode += "L" # Unsigned long (4 bytes) outstring = _pack(formatcode, value) if byteorder in [BYTEORDER_BIG_SWAP, BYTEORDER_LITTLE_SWAP]: outstring = _swap(outstring) assert len(outstring) == 4 return outstring
[docs]def _bytestring_to_long( bytestring, signed=False, number_of_registers=2, byteorder=BYTEORDER_BIG ): """Convert a bytestring to a long integer. Long integers (32 bits = 4 bytes) are stored in two consecutive 16-bit registers in the slave. Args: * bytestring (str): A string of length 4. * signed (bol): Whether large positive values should be interpreted as negative values. * number_of_registers (int): Should be 2. For error checking only. * byteorder (int): How multi-register data should be interpreted. Returns: The numerical value (int). Raises: ValueError, TypeError """ _check_string(bytestring, "byte string", minlength=4, maxlength=4) _check_bool(signed, description="signed parameter") _check_int( number_of_registers, minvalue=2, maxvalue=2, description="number of registers" ) _check_int( byteorder, minvalue=0, maxvalue=_MAX_BYTEORDER_VALUE, description="byteorder" ) if byteorder in [BYTEORDER_BIG, BYTEORDER_BIG_SWAP]: formatcode = ">" else: formatcode = "<" if signed: formatcode += "l" # (Signed) long (4 bytes) else: formatcode += "L" # Unsigned long (4 bytes) if byteorder in [BYTEORDER_BIG_SWAP, BYTEORDER_LITTLE_SWAP]: bytestring = _swap(bytestring) return _unpack(formatcode, bytestring)
[docs]def _float_to_bytestring(value, number_of_registers=2, byteorder=BYTEORDER_BIG): r"""Convert a numerical value to a bytestring. Floats are stored in two or more consecutive 16-bit registers in the slave. The encoding is according to the standard IEEE 754. ====================================== ================= =========== ================= Type of floating point number in slave Size Registers Range ====================================== ================= =========== ================= Single precision (binary32) 32 bits (4 bytes) 2 registers 1.4E-45 to 3.4E38 Double precision (binary64) 64 bits (8 bytes) 4 registers 5E-324 to 1.8E308 ====================================== ================= =========== ================= A floating point value of 1.0 is encoded (in single precision) as 3f800000 (hex). This will give a byte string ``'\x3f\x80\x00\x00'`` (big endian). Args: * value (float or int): The numerical value to be converted. * number_of_registers (int): Can be 2 or 4. * byteorder (int): How multi-register data should be interpreted. Returns: A bytestring (4 or 8 bytes). Raises: TypeError, ValueError """ _check_numerical(value, description="inputvalue") _check_int( number_of_registers, minvalue=2, maxvalue=4, description="number of registers" ) _check_int( byteorder, minvalue=0, maxvalue=_MAX_BYTEORDER_VALUE, description="byteorder" ) if byteorder in [BYTEORDER_BIG, BYTEORDER_BIG_SWAP]: formatcode = ">" else: formatcode = "<" if number_of_registers == 2: formatcode += "f" # Float (4 bytes) lengthtarget = 4 elif number_of_registers == 4: formatcode += "d" # Double (8 bytes) lengthtarget = 8 else: raise ValueError( "Wrong number of registers! Given value is {0!r}".format( number_of_registers ) ) outstring = _pack(formatcode, value) if byteorder in [BYTEORDER_BIG_SWAP, BYTEORDER_LITTLE_SWAP]: outstring = _swap(outstring) assert len(outstring) == lengthtarget return outstring
[docs]def _bytestring_to_float(bytestring, number_of_registers=2, byteorder=BYTEORDER_BIG): """Convert a four-byte string to a float. Floats are stored in two or more consecutive 16-bit registers in the slave. For discussion on precision, number of bits, number of registers, the range, byte order and on alternative names, see :func:`minimalmodbus._float_to_bytestring`. Args: * bytestring (str): A string of length 4 or 8. * number_of_registers (int): Can be 2 or 4. * byteorder (int): How multi-register data should be interpreted. Returns: A float. Raises: TypeError, ValueError """ _check_string(bytestring, minlength=4, maxlength=8, description="bytestring") _check_int( number_of_registers, minvalue=2, maxvalue=4, description="number of registers" ) _check_int( byteorder, minvalue=0, maxvalue=_MAX_BYTEORDER_VALUE, description="byteorder" ) number_of_bytes = _NUMBER_OF_BYTES_PER_REGISTER * number_of_registers if byteorder in [BYTEORDER_BIG, BYTEORDER_BIG_SWAP]: formatcode = ">" else: formatcode = "<" if number_of_registers == 2: formatcode += "f" # Float (4 bytes) elif number_of_registers == 4: formatcode += "d" # Double (8 bytes) else: raise ValueError( "Wrong number of registers! Given value is {0!r}".format( number_of_registers ) ) if len(bytestring) != number_of_bytes: raise ValueError( "Wrong length of the byte string! Given value is " + "{0!r}, and number_of_registers is {1!r}.".format( bytestring, number_of_registers ) ) if byteorder in [BYTEORDER_BIG_SWAP, BYTEORDER_LITTLE_SWAP]: bytestring = _swap(bytestring) return _unpack(formatcode, bytestring)
[docs]def _textstring_to_bytestring(inputstring, number_of_registers=16): """Convert a text string to a bytestring. Each 16-bit register in the slave are interpreted as two characters (1 byte = 8 bits). For example 16 consecutive registers can hold 32 characters (32 bytes). Not much of conversion is done, mostly error checking and string padding. If the inputstring is shorter that the allocated space, it is padded with spaces in the end. Args: * inputstring (str): The string to be stored in the slave. Max 2*number_of_registers characters. * number_of_registers (int): The number of registers allocated for the string. Returns: A bytestring (str). Raises: TypeError, ValueError """ _check_int( number_of_registers, minvalue=1, maxvalue=_MAX_NUMBER_OF_REGISTERS_TO_WRITE, description="number of registers", ) max_characters = _NUMBER_OF_BYTES_PER_REGISTER * number_of_registers _check_string(inputstring, "input string", minlength=1, maxlength=max_characters) bytestring = inputstring.ljust(max_characters) # Pad with space assert len(bytestring) == max_characters return bytestring
[docs]def _bytestring_to_textstring(bytestring, number_of_registers=16): """Convert a bytestring to a text string. Each 16-bit register in the slave are interpreted as two characters (1 byte = 8 bits). For example 16 consecutive registers can hold 32 characters (32 bytes). Not much of conversion is done, mostly error checking. Args: * bytestring (str): The string from the slave. Length = 2*number_of_registers * number_of_registers (int): The number of registers allocated for the string. Returns: A the text string (str). Raises: TypeError, ValueError """ _check_int( number_of_registers, minvalue=1, maxvalue=_MAX_NUMBER_OF_REGISTERS_TO_READ, description="number of registers", ) max_characters = _NUMBER_OF_BYTES_PER_REGISTER * number_of_registers _check_string( bytestring, "byte string", minlength=max_characters, maxlength=max_characters ) textstring = bytestring return textstring
[docs]def _valuelist_to_bytestring(valuelist, number_of_registers): """Convert a list of numerical values to a bytestring. Each element is 'unsigned INT16'. Args: * valuelist (list of int): The input list. The elements should be in the range 0 to 65535. * number_of_registers (int): The number of registers. For error checking. Should equal the number of elements in valuelist. Returns: A bytestring (str). Length = 2*number_of_registers Raises: TypeError, ValueError """ MINVALUE = 0 MAXVALUE = 0xFFFF _check_int(number_of_registers, minvalue=1, description="number of registers") if not isinstance(valuelist, list): raise TypeError( "The valuelist parameter must be a list. Given {0!r}.".format(valuelist) ) for value in valuelist: _check_int( value, minvalue=MINVALUE, maxvalue=MAXVALUE, description="elements in the input value list", ) _check_int( len(valuelist), minvalue=number_of_registers, maxvalue=number_of_registers, description="length of the list", ) number_of_bytes = _NUMBER_OF_BYTES_PER_REGISTER * number_of_registers bytestring = "" for value in valuelist: bytestring += _num_to_twobyte_string(value, signed=False) assert len(bytestring) == number_of_bytes return bytestring
[docs]def _bytestring_to_valuelist(bytestring, number_of_registers): """Convert a bytestring to a list of numerical values. The bytestring is interpreted as 'unsigned INT16'. Args: * bytestring (str): The string from the slave. Length = 2*number_of_registers * number_of_registers (int): The number of registers. For error checking. Returns: A list of integers. Raises: TypeError, ValueError """ _check_int(number_of_registers, minvalue=1, description="number of registers") number_of_bytes = _NUMBER_OF_BYTES_PER_REGISTER * number_of_registers _check_string( bytestring, "byte string", minlength=number_of_bytes, maxlength=number_of_bytes ) values = [] for i in range(number_of_registers): offset = _NUMBER_OF_BYTES_PER_REGISTER * i substring = bytestring[offset : (offset + _NUMBER_OF_BYTES_PER_REGISTER)] values.append(_twobyte_string_to_num(substring)) return values
[docs]def _now(): """Return a timestamp for time duration measurements. Returns a float, that increases with 1.0 per second. The starting point is undefined. """ if hasattr(time, "monotonic"): return time.monotonic() return time.time()
[docs]def _pack(formatstring, value): """Pack a value into a bytestring. Uses the built-in :mod:`struct` Python module. Args: * formatstring (str): String for the packing. See the :mod:`struct` module for details. * value (depends on formatstring): The value to be packed Returns: A bytestring (str). Raises: ValueError Note that the :mod:`struct` module produces byte buffers for Python3, but bytestrings for Python2. This is compensated for automatically. """ _check_string(formatstring, description="formatstring", minlength=1) try: result = struct.pack(formatstring, value) except Exception: errortext = ( "The value to send is probably out of range, as the num-to-bytestring " ) errortext += "conversion failed. Value: {0!r} Struct format code is: {1}" raise ValueError(errortext.format(value, formatstring)) if sys.version_info[0] > 2: return str( result, encoding="latin1" ) # Convert types to make it Python3 compatible return result
[docs]def _unpack(formatstring, packed): """Unpack a bytestring into a value. Uses the built-in :mod:`struct` Python module. Args: * formatstring (str): String for the packing. See the :mod:`struct` module for details. * packed (str): The bytestring to be unpacked. Returns: A value. The type depends on the formatstring. Raises: ValueError Note that the :mod:`struct` module wants byte buffers for Python3, but bytestrings for Python2. This is compensated for automatically. """ _check_string(formatstring, description="formatstring", minlength=1) _check_string(packed, description="packed string", minlength=1) if sys.version_info[0] > 2: packed = bytes( packed, encoding="latin1" ) # Convert types to make it Python3 compatible try: value = struct.unpack(formatstring, packed)[0] except Exception: errortext = ( "The received bytestring is probably wrong, as the bytestring-to-num " ) errortext += "conversion failed. Bytestring: {0!r} Struct format code is: {1}" raise InvalidResponseError(errortext.format(packed, formatstring)) return value
[docs]def _swap(bytestring): """Swap characters pairwise in a string. This corresponds to a "byte swap". Args: * bytestring (str): input. The length should be an even number. Return the string with characters swapped. """ length = len(bytestring) if length % 2: raise ValueError( "The length of the bytestring should be even. Given {!r}.".format( bytestring ) ) templist = list(bytestring) templist[1:length:2], templist[:length:2] = ( templist[:length:2], templist[1:length:2], ) return "".join(templist)
[docs]def _hexencode(bytestring, insert_spaces=False): r"""Convert a byte string to a hex encoded string. For example 'J' will return '4A', and ``'\x04'`` will return '04'. Args: * bytestring (str): Can be for example ``'A\x01B\x45'``. * insert_spaces (bool): Insert space characters between pair of characters to increase readability. Returns: A string of twice the length, with characters in the range '0' to '9' and 'A' to 'F'. The string will be longer if spaces are inserted. Raises: TypeError, ValueError """ _check_string(bytestring, description="byte string") separator = "" if not insert_spaces else " " # Use plain string formatting instead of binhex.hexlify, # in order to have it Python 2.x and 3.x compatible byte_representions = [] for char in bytestring: byte_representions.append("{0:02X}".format(ord(char))) return separator.join(byte_representions).strip()
[docs]def _hexdecode(hexstring): r"""Convert a hex encoded string to a byte string. For example '4A' will return 'J', and '04' will return ``'\x04'`` (which has length 1). Args: * hexstring (str): Can be for example 'A3' or 'A3B4'. Must be of even length. * Allowed characters are '0' to '9', 'a' to 'f' and 'A' to 'F' (not space). Returns: A string of half the length, with characters corresponding to all 0-255 values for each byte. Raises: TypeError, ValueError """ # Note: For Python3 the appropriate would be: raise TypeError(new_error_message) from err # but the Python2 interpreter will indicate SyntaxError. # Thus we need to live with this warning in Python3: # 'During handling of the above exception, another exception occurred' _check_string(hexstring, description="hexstring") if len(hexstring) % 2 != 0: raise ValueError( "The input hexstring must be of even length. Given: {!r}".format(hexstring) ) if sys.version_info[0] > 2: converted_bytes = bytes(hexstring, "latin1") try: return str(binascii.unhexlify(converted_bytes), encoding="latin1") except binascii.Error as err: new_error_message = "Hexdecode reported an error: {!s}. Input hexstring: {}".format( err.args[0], hexstring ) raise TypeError(new_error_message) else: try: return hexstring.decode("hex") except TypeError: # TODO When Python3 only, show info from first exception raise TypeError( "Hexdecode reported an error. Input hexstring: {}".format(hexstring) )
[docs]def _hexlify(bytestring): """Convert a byte string to a hex encoded string, with spaces for easier reading. This is just a facade for _hexencode() with insert_spaces = True. See _hexencode() for details. """ return _hexencode(bytestring, insert_spaces=True)
[docs]def _calculate_number_of_bytes_for_bits(number_of_bits): """Calculate number of full bytes required to house a number of bits. Args: * number_of_bits (str): Number of bits Error checking should have been done before. Algorithm from MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b """ result = number_of_bits // _BITS_PER_BYTE # Integer division in Python2 and 3 if number_of_bits % _BITS_PER_BYTE: result += 1 return result
[docs]def _bit_to_bytestring(value): """Create the bit pattern that is used for writing single bits. Used for functioncode 5. The same value is sent back in the response from the slave. This is basically a storage of numerical constants. Args: * value (int): can be 0 or 1 Returns: The bit pattern (string). Raises: TypeError, ValueError """ _check_int(value, minvalue=0, maxvalue=1, description="inputvalue") if value == 0: return "\x00\x00" else: return "\xff\x00"
[docs]def _bits_to_bytestring(valuelist): """Build a bytestring from a list of bits. This is used for functioncode 15. Args: * valuelist (list of int): 0 or 1 Returns a bytestring. """ if not isinstance(valuelist, list): raise TypeError( "The input should be a list. " + "Given: {!r}".format(valuelist) ) for value in valuelist: if value not in [0, 1, False, True]: raise ValueError( "Wrong value in list of bits. " + "Given: {!r}".format(value) ) list_position = 0 outputstring = "" while list_position < len(valuelist): sublist = valuelist[list_position : (list_position + _BITS_PER_BYTE)] bytevalue = 0 for bitposition, value in enumerate(sublist): bytevalue |= value << bitposition outputstring += chr(bytevalue) list_position += _BITS_PER_BYTE return outputstring
[docs]def _bytestring_to_bits(bytestring, number_of_bits): """Parse bits from a bytestring. This is used for parsing the bits in response messages for functioncode 1 and 2. The first byte in the bytestring contains info on the addressed bit (in LSB in that byte). Second bit from right contains info on the bit on the next address. Next byte in the bytestring contains data on next 8 bits. Might be padded with zeros toward MSB. Args: * bytestring (str): input string * number_of_bits (int): Number of bits to extract Returns a list of values (0 or 1). The length of the list is equal to number_of_bits. """ expected_length = _calculate_number_of_bytes_for_bits(number_of_bits) if len(bytestring) != expected_length: raise ValueError( "Wrong length of bytestring. Expected is " + "{} bytes (for {} bits), actual is {} bytes.".format( expected_length, number_of_bits, len(bytestring) ) ) total_list = [] for character in bytestring: bytevalue = ord(character) for bitposition in range(_BITS_PER_BYTE): bitvalue = (bytevalue & (1 << bitposition)) > 0 total_list.append(int(bitvalue)) return total_list[:number_of_bits]
# ################### # # Number manipulation # # ################### #
[docs]def _twos_complement(x, bits=16): """Calculate the two's complement of an integer. Then also negative values can be represented by an upper range of positive values. See https://en.wikipedia.org/wiki/Two%27s_complement Args: * x (int): input integer. * bits (int): number of bits, must be > 0. Returns: An int, that represents the two's complement of the input. Example for bits=8: ==== ======= x returns ==== ======= 0 0 1 1 127 127 -128 128 -127 129 -1 255 ==== ======= """ _check_int(bits, minvalue=0, description="number of bits") _check_int(x, description="input") upperlimit = 2 ** (bits - 1) - 1 lowerlimit = -2 ** (bits - 1) if x > upperlimit or x < lowerlimit: raise ValueError( "The input value is out of range. Given value is " + "{0}, but allowed range is {1} to {2} when using {3} bits.".format( x, lowerlimit, upperlimit, bits ) ) # Calculate two'2 complement if x >= 0: return x return x + 2 ** bits
[docs]def _from_twos_complement(x, bits=16): """Calculate the inverse(?) of a two's complement of an integer. Args: * x (int): input integer. * bits (int): number of bits, must be > 0. Returns: An int, that represents the inverse(?) of two's complement of the input. Example for bits=8: === ======= x returns === ======= 0 0 1 1 127 127 128 -128 129 -127 255 -1 === ======= """ _check_int(bits, minvalue=0, description="number of bits") _check_int(x, description="input") upperlimit = 2 ** (bits) - 1 lowerlimit = 0 if x > upperlimit or x < lowerlimit: raise ValueError( "The input value is out of range. Given value is " + "{0}, but allowed range is {1} to {2} when using {3} bits.".format( x, lowerlimit, upperlimit, bits ) ) # Calculate inverse(?) of two'2 complement limit = 2 ** (bits - 1) - 1 if x <= limit: return x return x - 2 ** bits
# ################ # # Bit manipulation # # ################ #
[docs]def _set_bit_on(x, bit_num): """Set bit 'bit_num' to True. Args: * x (int): The value before. * bit_num (int): The bit number that should be set to True. Returns: The value after setting the bit. This is an integer. For example: For x = 4 (dec) = 0100 (bin), setting bit number 0 results in 0101 (bin) = 5 (dec). """ _check_int(x, minvalue=0, description="input value") _check_int(bit_num, minvalue=0, description="bitnumber") return x | (1 << bit_num)
[docs]def _check_bit(x, bit_num): """Check if bit 'bit_num' is set the input integer. Args: * x (int): The input value. * bit_num (int): The bit number to be checked Returns: True or False For example: For x = 4 (dec) = 0100 (bin), checking bit number 2 results in True, and checking bit number 3 results in False. """ _check_int(x, minvalue=0, description="input value") _check_int(bit_num, minvalue=0, description="bitnumber") return (x & (1 << bit_num)) > 0
# ######################## # # Error checking functions # # ######################## # _CRC16TABLE = ( 0, 49345, 49537, 320, 49921, 960, 640, 49729, 50689, 1728, 1920, 51009, 1280, 50625, 50305, 1088, 52225, 3264, 3456, 52545, 3840, 53185, 52865, 3648, 2560, 51905, 52097, 2880, 51457, 2496, 2176, 51265, 55297, 6336, 6528, 55617, 6912, 56257, 55937, 6720, 7680, 57025, 57217, 8000, 56577, 7616, 7296, 56385, 5120, 54465, 54657, 5440, 55041, 6080, 5760, 54849, 53761, 4800, 4992, 54081, 4352, 53697, 53377, 4160, 61441, 12480, 12672, 61761, 13056, 62401, 62081, 12864, 13824, 63169, 63361, 14144, 62721, 13760, 13440, 62529, 15360, 64705, 64897, 15680, 65281, 16320, 16000, 65089, 64001, 15040, 15232, 64321, 14592, 63937, 63617, 14400, 10240, 59585, 59777, 10560, 60161, 11200, 10880, 59969, 60929, 11968, 12160, 61249, 11520, 60865, 60545, 11328, 58369, 9408, 9600, 58689, 9984, 59329, 59009, 9792, 8704, 58049, 58241, 9024, 57601, 8640, 8320, 57409, 40961, 24768, 24960, 41281, 25344, 41921, 41601, 25152, 26112, 42689, 42881, 26432, 42241, 26048, 25728, 42049, 27648, 44225, 44417, 27968, 44801, 28608, 28288, 44609, 43521, 27328, 27520, 43841, 26880, 43457, 43137, 26688, 30720, 47297, 47489, 31040, 47873, 31680, 31360, 47681, 48641, 32448, 32640, 48961, 32000, 48577, 48257, 31808, 46081, 29888, 30080, 46401, 30464, 47041, 46721, 30272, 29184, 45761, 45953, 29504, 45313, 29120, 28800, 45121, 20480, 37057, 37249, 20800, 37633, 21440, 21120, 37441, 38401, 22208, 22400, 38721, 21760, 38337, 38017, 21568, 39937, 23744, 23936, 40257, 24320, 40897, 40577, 24128, 23040, 39617, 39809, 23360, 39169, 22976, 22656, 38977, 34817, 18624, 18816, 35137, 19200, 35777, 35457, 19008, 19968, 36545, 36737, 20288, 36097, 19904, 19584, 35905, 17408, 33985, 34177, 17728, 34561, 18368, 18048, 34369, 33281, 17088, 17280, 33601, 16640, 33217, 32897, 16448, ) r"""CRC-16 lookup table with 256 elements. Built with this code:: poly=0xA001 table = [] for index in range(256): data = index << 1 crc = 0 for _ in range(8, 0, -1): data >>= 1 if (data ^ crc) & 0x0001: crc = (crc >> 1) ^ poly else: crc >>= 1 table.append(crc) output = '' for i, m in enumerate(table): if not i%11: output += "\n" output += "{:5.0f}, ".format(m) print output """
[docs]def _calculate_crc_string(inputstring): """Calculate CRC-16 for Modbus. Args: inputstring (str): An arbitrary-length message (without the CRC). Returns: A two-byte CRC string, where the least significant byte is first. """ _check_string(inputstring, description="input CRC string") # Preload a 16-bit register with ones register = 0xFFFF for char in inputstring: register = (register >> 8) ^ _CRC16TABLE[(register ^ ord(char)) & 0xFF] return _num_to_twobyte_string(register, lsb_first=True)
[docs]def _calculate_lrc_string(inputstring): """Calculate LRC for Modbus. Args: inputstring (str): An arbitrary-length message (without the beginning colon and terminating CRLF). It should already be decoded from hex-string. Returns: A one-byte LRC bytestring (not encoded to hex-string) Algorithm from the document 'MODBUS over serial line specification and implementation guide V1.02'. The LRC is calculated as 8 bits (one byte). For example a LRC 0110 0001 (bin) = 61 (hex) = 97 (dec) = 'a'. This function will then return 'a'. In Modbus ASCII mode, this should be transmitted using two characters. This example should be transmitted '61', which is a string of length two. This function does not handle that conversion for transmission. """ _check_string(inputstring, description="input LRC string") register = 0 for character in inputstring: register += ord(character) lrc = ((register ^ 0xFF) + 1) & 0xFF return _num_to_onebyte_string(lrc)
[docs]def _check_mode(mode): """Check that the Modbus mode is valie. Args: mode (string): The Modbus mode (MODE_RTU or MODE_ASCII) Raises: TypeError, ValueError """ if not isinstance(mode, str): raise TypeError("The {0} should be a string. Given: {1!r}".format("mode", mode)) if mode not in [MODE_RTU, MODE_ASCII]: raise ValueError( "Unreconized Modbus mode given. Must be 'rtu' or 'ascii' but {0!r} was given.".format( mode ) )
[docs]def _check_functioncode(functioncode, list_of_allowed_values=None): """Check that the given functioncode is in the list_of_allowed_values. Also verifies that 1 <= function code <= 127. Args: * functioncode (int): The function code * list_of_allowed_values (list of int): Allowed values. Use *None* to bypass this part of the checking. Raises: TypeError, ValueError """ FUNCTIONCODE_MIN = 1 FUNCTIONCODE_MAX = 127 _check_int( functioncode, FUNCTIONCODE_MIN, FUNCTIONCODE_MAX, description="functioncode" ) if list_of_allowed_values is None: return if not isinstance(list_of_allowed_values, list): raise TypeError( "The list_of_allowed_values should be a list. Given: {0!r}".format( list_of_allowed_values ) ) for value in list_of_allowed_values: _check_int( value, FUNCTIONCODE_MIN, FUNCTIONCODE_MAX, description="functioncode inside list_of_allowed_values", ) if functioncode not in list_of_allowed_values: raise ValueError( "Wrong function code: {0}, allowed values are {1!r}".format( functioncode, list_of_allowed_values ) )
[docs]def _check_slaveaddress(slaveaddress): """Check that the given slaveaddress is valid. Args: slaveaddress (int): The slave address Raises: TypeError, ValueError """ SLAVEADDRESS_MAX = 255 # Allows usage also of reserved addresses SLAVEADDRESS_MIN = 0 _check_int( slaveaddress, SLAVEADDRESS_MIN, SLAVEADDRESS_MAX, description="slaveaddress" )
[docs]def _check_registeraddress(registeraddress): """Check that the given registeraddress is valid. Args: registeraddress (int): The register address Raises: TypeError, ValueError """ REGISTERADDRESS_MAX = 0xFFFF REGISTERADDRESS_MIN = 0 _check_int( registeraddress, REGISTERADDRESS_MIN, REGISTERADDRESS_MAX, description="registeraddress", )
[docs]def _check_response_payload( payload, functioncode, registeraddress, value, number_of_decimals, number_of_registers, number_of_bits, signed, byteorder, # Not used. For keeping same signature as _parse_payload() payloadformat, # Not used. For keeping same signature as _parse_payload() ): if functioncode in [1, 2, 3, 4]: _check_response_bytecount(payload) if functioncode in [5, 6, 15, 16]: _check_response_registeraddress(payload, registeraddress) if functioncode == 5: _check_response_writedata(payload, _bit_to_bytestring(value)) elif functioncode == 6: _check_response_writedata( payload, _num_to_twobyte_string(value, number_of_decimals, signed=signed) ) elif functioncode == 15: # response number of bits _check_response_number_of_registers(payload, number_of_bits) elif functioncode == 16: _check_response_number_of_registers(payload, number_of_registers) # Response for read bits if functioncode in [1, 2]: registerdata = payload[_NUMBER_OF_BYTES_BEFORE_REGISTERDATA:] expected_number_of_bytes = _calculate_number_of_bytes_for_bits(number_of_bits) if len(registerdata) != expected_number_of_bytes: raise InvalidResponseError( "The data length is wrong for payloadformat BIT/BITS." + " Expected: {} Actual: {}.".format( expected_number_of_bytes, len(registerdata) ) ) # Response for read registers if functioncode in [3, 4]: registerdata = payload[_NUMBER_OF_BYTES_BEFORE_REGISTERDATA:] number_of_register_bytes = number_of_registers * _NUMBER_OF_BYTES_PER_REGISTER if len(registerdata) != number_of_register_bytes: raise InvalidResponseError( "The register data length is wrong. " + "Registerdata: {!r} bytes. Expected: {!r}.".format( len(registerdata), number_of_register_bytes ) )
[docs]def _check_response_slaveerrorcode(response): """Check if the slave indicates an error. Args: * response (string): Response from the slave The response is in RTU format, but the checksum might be one or two bytes depending on whether it was sent in RTU or ASCII mode. Checking of type and length of the response should be done before calling this functions. Raises: SlaveReportedException or subclass """ NON_ERRORS = [5] SLAVE_ERRORS = { 1: IllegalRequestError("Slave reported illegal function"), 2: IllegalRequestError("Slave reported illegal data address"), 3: IllegalRequestError("Slave reported illegal data value"), 4: SlaveReportedException("Slave reported device failure"), 6: SlaveDeviceBusyError("Slave reported device busy"), 7: NegativeAcknowledgeError("Slave reported negative acknowledge"), 8: SlaveReportedException("Slave reported memory parity error"), 10: SlaveReportedException("Slave reported gateway path unavailable"), 11: SlaveReportedException( "Slave reported gateway target device failed to respond" ), } if len(response) < _BYTEPOSITION_FOR_SLAVE_ERROR_CODE + 1: return # This check is also done before calling, do not raise exception here. received_functioncode = ord(response[_BYTEPOSITION_FOR_FUNCTIONCODE]) if _check_bit(received_functioncode, _BITNUMBER_FUNCTIONCODE_ERRORINDICATION): slave_error_code = ord(response[_BYTEPOSITION_FOR_SLAVE_ERROR_CODE]) if slave_error_code in NON_ERRORS: return error = SLAVE_ERRORS.get( slave_error_code, SlaveReportedException( "Slave reported error code " + str(slave_error_code) ), ) raise error
[docs]def _check_response_bytecount(payload): """Check that the number of bytes as given in the response is correct. The first byte in the payload indicates the length of the payload (first byte not counted). Args: payload (string): The payload Raises: TypeError, ValueError, InvalidResponseError """ POSITION_FOR_GIVEN_NUMBER = 0 NUMBER_OF_BYTES_TO_SKIP = 1 _check_string( payload, minlength=1, description="payload", exception_type=InvalidResponseError ) given_number_of_databytes = ord(payload[POSITION_FOR_GIVEN_NUMBER]) counted_number_of_databytes = len(payload) - NUMBER_OF_BYTES_TO_SKIP if given_number_of_databytes != counted_number_of_databytes: errortemplate = ( "Wrong given number of bytes in the response: " + "{0}, but counted is {1} as data payload length is {2}." + " The data payload is: {3!r}" ) errortext = errortemplate.format( given_number_of_databytes, counted_number_of_databytes, len(payload), payload, ) raise InvalidResponseError(errortext)
[docs]def _check_response_registeraddress(payload, registeraddress): """Check that the start adress as given in the response is correct. The first two bytes in the payload holds the address value. Args: * payload (string): The payload * registeraddress (int): What the register address actually shoud be (use decimal numbers, not hex). Raises: TypeError, ValueError, InvalidResponseError """ _check_string( payload, minlength=2, description="payload", exception_type=InvalidResponseError ) _check_registeraddress(registeraddress) BYTERANGE_FOR_STARTADDRESS = slice(0, 2) bytes_for_startaddress = payload[BYTERANGE_FOR_STARTADDRESS] received_startaddress = _twobyte_string_to_num(bytes_for_startaddress) if received_startaddress != registeraddress: raise InvalidResponseError( "Wrong given write start adress: " + "{0}, but commanded is {1}. The data payload is: {2!r}".format( received_startaddress, registeraddress, payload ) )
[docs]def _check_response_number_of_registers(payload, number_of_registers): """Check that the number of written registers as given in the response is correct. The bytes 2 and 3 (zero based counting) in the payload holds the value. Args: * payload (string): The payload * number_of_registers (int): Number of registers that have been written Raises: TypeError, ValueError, InvalidResponseError """ _check_string( payload, minlength=4, description="payload", exception_type=InvalidResponseError ) _check_int( number_of_registers, minvalue=1, maxvalue=max( _MAX_NUMBER_OF_REGISTERS_TO_READ, _MAX_NUMBER_OF_REGISTERS_TO_WRITE ), description="number of registers", ) BYTERANGE_FOR_NUMBER_OF_REGISTERS = slice(2, 4) bytes_for_mumber_of_registers = payload[BYTERANGE_FOR_NUMBER_OF_REGISTERS] received_number_of_written_registers = _twobyte_string_to_num( bytes_for_mumber_of_registers ) if received_number_of_written_registers != number_of_registers: raise InvalidResponseError( "Wrong number of registers to write in the response: " + "{0}, but commanded is {1}. The data payload is: {2!r}".format( received_number_of_written_registers, number_of_registers, payload ) )
[docs]def _check_response_writedata(payload, writedata): """Check that the write data as given in the response is correct. The bytes 2 and 3 (zero based counting) in the payload holds the write data. Args: * payload (string): The payload * writedata (string): The data that should have been written. Length should be 2 bytes. Raises: TypeError, ValueError, InvalidResponseError """ _check_string( payload, minlength=4, description="payload", exception_type=InvalidResponseError ) _check_string(writedata, minlength=2, maxlength=2, description="writedata") BYTERANGE_FOR_WRITEDATA = slice(2, 4) received_writedata = payload[BYTERANGE_FOR_WRITEDATA] if received_writedata != writedata: raise InvalidResponseError( "Wrong write data in the response: " + "{0!r}, but commanded is {1!r}. The data payload is: {2!r}".format( received_writedata, writedata, payload ) )
[docs]def _check_string( inputstring, description, minlength=0, maxlength=None, force_ascii=False, exception_type=ValueError, ): """Check that the given string is valid. Args: * inputstring (string): The string to be checked * description (string): Used in error messages for the checked inputstring * minlength (int): Minimum length of the string * maxlength (int or None): Maximum length of the string * force_ascii (bool): Enforce that the string is ASCII * exception_type (Exception): The type of exception to raise for length errors The force_ascii argument is valid only for Python3, as all strings are ASCII in Python2. Raises: TypeError, ValueError or the one given by exception_type Uses the function :func:`_check_int` internally. """ # Type checking if not isinstance(description, str): raise TypeError( "The description should be a string. Given: {0!r}".format(description) ) if not isinstance(inputstring, str): raise TypeError( "The {0} should be a string. Given: {1!r}".format(description, inputstring) ) if not isinstance(maxlength, (int, type(None))): raise TypeError( "The maxlength must be an integer or None. Given: {0!r}".format(maxlength) ) try: issubclass(exception_type, Exception) except TypeError: raise TypeError( "The exception_type must be an exception class. " + "It not even a class. Given: {0!r}".format(type(exception_type)) ) if not issubclass(exception_type, Exception): raise TypeError( "The exception_type must be an exception class. Given: {0!r}".format( type(exception_type) ) ) # Check values _check_int(minlength, minvalue=0, maxvalue=None, description="minlength") if len(inputstring) < minlength: raise exception_type( "The {0} is too short: {1}, but minimum value is {2}. Given: {3!r}".format( description, len(inputstring), minlength, inputstring ) ) if maxlength is not None: if maxlength < 0: raise ValueError( "The maxlength must be positive. Given: {0}".format(maxlength) ) if maxlength < minlength: raise ValueError( "The maxlength must not be smaller than minlength. Given: {0} and {1}".format( maxlength, minlength ) ) if len(inputstring) > maxlength: raise exception_type( "The {0} is too long: {1}, but maximum value is {2}. Given: {3!r}".format( description, len(inputstring), maxlength, inputstring ) ) if force_ascii and sys.version > "3": try: inputstring.encode("ascii") except UnicodeEncodeError: raise ValueError( "The {0} must be ASCII. Given: {1!r}".format(description, inputstring) )
[docs]def _check_int(inputvalue, minvalue=None, maxvalue=None, description="inputvalue"): """Check that the given integer is valid. Args: * inputvalue (int or long): The integer to be checked * minvalue (int or long, or None): Minimum value of the integer * maxvalue (int or long, or None): Maximum value of the integer * description (string): Used in error messages for the checked inputvalue Raises: TypeError, ValueError Note: Can not use the function :func:`_check_string`, as that function uses this function internally. """ if not isinstance(description, str): raise TypeError( "The description should be a string. Given: {0!r}".format(description) ) if not isinstance(inputvalue, (int, long)): raise TypeError( "The {0} must be an integer. Given: {1!r}".format(description, inputvalue) ) if not isinstance(minvalue, (int, long, type(None))): raise TypeError( "The minvalue must be an integer or None. Given: {0!r}".format(minvalue) ) if not isinstance(maxvalue, (int, long, type(None))): raise TypeError( "The maxvalue must be an integer or None. Given: {0!r}".format(maxvalue) ) _check_numerical(inputvalue, minvalue, maxvalue, description)
[docs]def _check_numerical( inputvalue, minvalue=None, maxvalue=None, description="inputvalue" ): """Check that the given numerical value is valid. Args: * inputvalue (numerical): The value to be checked. * minvalue (numerical): Minimum value Use None to skip this part of the test. * maxvalue (numerical): Maximum value. Use None to skip this part of the test. * description (string): Used in error messages for the checked inputvalue Raises: TypeError, ValueError Note: Can not use the function :func:`_check_string`, as it uses this function internally. """ # Type checking if not isinstance(description, str): raise TypeError( "The description should be a string. Given: {0!r}".format(description) ) if not isinstance(inputvalue, (int, long, float)): raise TypeError( "The {0} must be numerical. Given: {1!r}".format(description, inputvalue) ) if not isinstance(minvalue, (int, float, long, type(None))): raise TypeError( "The minvalue must be numeric or None. Given: {0!r}".format(minvalue) ) if not isinstance(maxvalue, (int, float, long, type(None))): raise TypeError( "The maxvalue must be numeric or None. Given: {0!r}".format(maxvalue) ) # Consistency checking if (minvalue is not None) and (maxvalue is not None): if maxvalue < minvalue: raise ValueError( "The maxvalue must not be smaller than minvalue. " + "Given: {0} and {1}, respectively.".format(maxvalue, minvalue) ) # Value checking if minvalue is not None: if inputvalue < minvalue: raise ValueError( "The {0} is too small: {1}, but minimum value is {2}.".format( description, inputvalue, minvalue ) ) if maxvalue is not None: if inputvalue > maxvalue: raise ValueError( "The {0} is too large: {1}, but maximum value is {2}.".format( description, inputvalue, maxvalue ) )
[docs]def _check_bool(inputvalue, description="inputvalue"): """Check that the given inputvalue is a boolean. Args: * inputvalue (boolean): The value to be checked. * description (string): Used in error messages for the checked inputvalue. Raises: TypeError, ValueError """ _check_string(description, minlength=1, description="description string") if not isinstance(inputvalue, bool): raise TypeError( "The {0} must be boolean. Given: {1!r}".format(description, inputvalue) )
##################### # Development tools # #####################
[docs]def _print_out(inputstring): """Print the inputstring. To make it compatible with Python2 and Python3. Args: inputstring (str): The string that should be printed. Raises: TypeError """ _check_string(inputstring, description="string to print") sys.stdout.write(inputstring + "\n") sys.stdout.flush()
# def _interpretRawMessage(inputstr): # r"""Generate a human readable description of a Modbus bytestring. # Args: # inputstr (str): The bytestring that should be interpreted. # Returns: # A descriptive string. # For example, the string ``'\n\x03\x10\x01\x00\x01\xd0q'`` should give something like:: # T ODO: update # Modbus bytestring decoder # Input string (length 8 characters): '\n\x03\x10\x01\x00\x01\xd0q' # Probably modbus RTU mode. # Slave address: 10 (dec). Function code: 3 (dec). # Valid message. Extracted payload: '\x10\x01\x00\x01' # Pos Character Hex Dec Probable interpretation # ------------------------------------------------- # 0: '\n' 0A 10 Slave address # 1: '\x03' 03 3 Function code # 2: '\x10' 10 16 Payload # 3: '\x01' 01 1 Payload # 4: '\x00' 00 0 Payload # 5: '\x01' 01 1 Payload # 6: '\xd0' D0 208 Checksum, CRC LSB # 7: 'q' 71 113 Checksum, CRC MSB # """ # raise NotImplementedError() # output = "" # output += "Modbus bytestring decoder\n" # output += "Input string (length {} characters): {!r} \n".format( # len(inputstr), inputstr # ) # # Detect modbus type # if inputstr.startswith(_ASCII_HEADER) and inputstr.endswith(_ASCII_FOOTER): # mode = MODE_ASCII # else: # mode = MODE_RTU # output += "Probably Modbus {} mode.\n".format(mode.upper()) # # Extract slave address and function code # try: # if mode == MODE_ASCII: # slaveaddress = int(inputstr[1:3]) # functioncode = int(inputstr[3:5]) # else: # slaveaddress = ord(inputstr[0]) # functioncode = ord(inputstr[1]) # output += "Slave address: {} (dec). Function code: {} (dec).\n".format( # slaveaddress, functioncode # ) # except Exception: # output += "\nCould not extract slave address and function code. \n\n" # # Check message validity # try: # extractedpayload = _extract_payload(inputstr, slaveaddress, mode, functioncode) # output += "Valid message. Extracted payload: {!r}\n".format(extractedpayload) # except (ValueError, TypeError) as err: # output += "\nThe message does not seem to be valid Modbus {}. ".format(mode.upper()) # output += "Error message: \n{}. \n\n".format(err.messages) # except NameError as err: # output += ( # "\nNo message validity checking. \n\n" # ) # Slave address or function code not available # # Generate table describing the message # if mode == MODE_RTU: # output += "\nPos Character Hex Dec Probable interpretation \n" # output += "------------------------------------------------- \n" # for i, character in enumerate(inputstr): # if i == 0: # description = "Slave address" # elif i == 1: # description = "Function code" # elif i == len(inputstr) - 2: # description = "Checksum, CRC LSB" # elif i == len(inputstr) - 1: # description = "Checksum, CRC MSB" # else: # description = "Payload" # output += "{0:3.0f}: {1!r:<8} {2:02X} {2: 4.0f} {3:<10} \n".format( # i, character, ord(character), description # ) # elif mode == MODE_ASCII: # output += "\nPos Character(s) Converted Hex Dec Probable interpretation \n" # output += "--------------------------------------------------------------- \n" # i = 0 # while i < len(inputstr): # if inputstr[i] in [":", "\r", "\n"]: # if inputstr[i] == ":": # description = "Start character" # else: # description = "Stop character" # output += "{0:3.0f}: {1!r:<8} {2} \n".format( # i, inputstr[i], description # ) # i += 1 # else: # if i == 1: # description = "Slave address" # elif i == 3: # description = "Function code" # elif i == len(inputstr) - 4: # description = "Checksum (LRC)" # else: # description = "Payload" # try: # hexvalue = _hexdecode(inputstr[i:(i + 2)]) # output += "{0:3.0f}: {1!r:<8} {2!r} {3:02X} {3: 4.0f} {4} \n". # format( # i, inputstr[i:(i + 2)], hexvalue, ord(hexvalue), description # ) # except Exception: # output += "{0:3.0f}: {1!r:<8} ? ? ? {2} \n".format( # i, inputstr[i:(i + 2)], description # ) # i += 2 # # Generate description for the payload # output += "\n\n" # try: # output += _interpretPayload(functioncode, extractedpayload) # except Exception: # output += ( # "\nCould not interpret the payload. \n\n" # ) # Payload or function code not available # return output # def _interpretPayload(functioncode, payload): # r"""Generate a human readable description of a Modbus payload. # Args: # * functioncode (int): Function code # * payload (str): The payload that should be interpreted. It should be a # byte string. # Returns: # A descriptive string. # For example, the payload ``'\x10\x01\x00\x01'`` for functioncode 3 should give # something like:: # T ODO: Update # """ # raise NotImplementedError() # output = "" # output += "Modbus payload decoder\n" # output += "Input payload (length {} characters): {!r} \n".format( # len(payload), payload # ) # output += "Function code: {} (dec).\n".format(functioncode) # if len(payload) == 4: # FourbyteMessageFirstHalfValue = _twobyte_string_to_num(payload[0:2]) # FourbyteMessageSecondHalfValue = _twobyte_string_to_num(payload[2:4]) # return output
[docs]def _get_diagnostic_string(): """Generate a diagnostic string, showing the module version, the platform etc. Returns: A descriptive string. """ text = "\n## Diagnostic output from minimalmodbus ## \n\n" text += "Minimalmodbus version: " + __version__ + "\n" text += "Minimalmodbus status: " + __status__ + "\n" text += "File name (with relative path): " + __file__ + "\n" text += "Full file path: " + os.path.abspath(__file__) + "\n\n" text += "pySerial version: " + serial.VERSION + "\n" text += "pySerial full file path: " + os.path.abspath(serial.__file__) + "\n\n" text += "Platform: " + sys.platform + "\n" text += "Filesystem encoding: " + repr(sys.getfilesystemencoding()) + "\n" text += "Byteorder: " + sys.byteorder + "\n" text += "Python version: " + sys.version + "\n" text += "Python version info: " + repr(sys.version_info) + "\n" text += "Python flags: " + repr(sys.flags) + "\n" text += "Python argv: " + repr(sys.argv) + "\n" text += "Python prefix: " + repr(sys.prefix) + "\n" text += "Python exec prefix: " + repr(sys.exec_prefix) + "\n" text += "Python executable: " + repr(sys.executable) + "\n" try: text += "Long info: " + repr(sys.long_info) + "\n" except Exception: text += "Long info: (none)\n" # For Python3 compatibility try: text += "Float repr style: " + repr(sys.float_repr_style) + "\n\n" except Exception: text += "Float repr style: (none) \n\n" # For Python 2.6 compatibility text += "Variable __name__: " + __name__ + "\n" text += "Current directory: " + os.getcwd() + "\n\n" text += "Python path: \n" text += "\n".join(sys.path) + "\n" text += "\n## End of diagnostic output ## \n" return text
# For backward compatibility _getDiagnosticString = _get_diagnostic_string